百度百科版本

长短期记忆人工神经网络(Long-Short Term Memory,LSTM)论文首次发表于1997年。由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。

LSTM的表现通常比时间递归神经网络及隐马尔科夫模型(HMM)更好,比如用在不分段连续手写识别上。2009年,用LSTM构建的人工神经网络模型赢得过ICDAR手写识别比赛冠军。LSTM还普遍用于自主语音识别,2013年运用TIMIT自然演讲数据库达成17.7%错误率的纪录。作为非线性模型,LSTM可作为复杂的非线性单元用于构造更大型深度神经网络。

查看详情

 

维基百科版本

长短期记忆(LSTM)单位是递归神经网络(RNN)的单位。由LSTM单元组成的RNN通常称为LSTM网络(或仅称为LSTM)。公共LSTM单元由单元,输入门,输出门和忘记门组成。该单元记住任意时间间隔内的值,并且三个门控制进出单元的信息流。

LSTM网络非常适合基于时间序列数据进行分类,处理和预测,因为在时间序列中的重要事件之间可能存在未知持续时间的滞后。开发LSTM是为了处理在训练传统RNN时可能遇到的爆炸和消失的梯度问题。对于间隙长度的相对不敏感性是LSTM相对于RNN,隐马尔可夫模型和其他序列学习方法在许多应用中的优势。

查看详情