百度百科版本
人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。
在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
维基百科版本
人工神经网络(ANN)或连接系统是由构成动物大脑的生物神经网络模糊地启发的计算系统。神经网络本身不是算法,而是许多不同机器学习算法的框架,它们协同工作并处理复杂的数据输入。此类系统通过考虑示例“学习”执行任务,通常不用任何特定于任务的规则编程。例如,在图像识别中,他们可能通过分析手动的示例图像来学习识别包含猫的图像标记为“猫”或“没有猫”,并使用结果来识别其他图像中的猫。他们在没有任何关于猫的先验知识的情况下这样做,例如,他们有毛皮,尾巴,胡须和猫般的面孔。相反,它们会自动从他们处理的学习资料中生成识别特征。
ANN基于称为人工神经元的连接单元或节点的集合,其松散地模拟生物大脑中的神经元。每个连接,如生物大脑中的突触,可以将信号从一个人工神经元传递到另一个人工神经元。接收信号的人工神经元可以处理它,然后发信号通知与之相连的其他人工神经元。
在常见的ANN实现中,人工神经元之间的连接处的信号是实数,并且每个人工神经元的输出通过其输入之和的一些非线性函数来计算。人工神经元之间的联系称为“边缘”。人工神经元和边缘通常具有重量随着学习的进行而调整。重量增加或减少连接处信号的强度。人工神经元可以具有阈值,使得仅在聚合信号超过该阈值时才发送信号。通常,人工神经元聚集成层。不同的层可以对其输入执行不同类型的转换。信号可能在多次遍历各层之后从第一层(输入层)传播到最后一层(输出层)。
人工神经网络方法的最初目标是以与人类大脑相同的方式解决问题。然而,随着时间的推移,注意力转移到执行特定任务,导致偏离生物学。人工神经网络已经用于各种任务,包括计算机视觉,语音识别,机器翻译,社交网络过滤,游戏板和视频游戏以及医学诊断。