什么是矩阵
矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。
由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:
标量、向量、矩阵、张量的关系
这4个概念是维度不断上升的,我们用点线面体的概念来比喻解释会更加容易理解:
感兴趣的可以通过下面的内容了解详情:
《一文看懂标量》
《一文看懂向量》
《一文看懂矩阵》
《一文看懂张量》
百度百科和维基百科
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
在数学中,矩阵是一个矩形 阵列的数字,符号,或表达,排列成行和列。例如,下面矩阵的尺寸是2×3(读“两乘三”),因为有两行三列:
如果它们具有相同的大小(每个矩阵具有与另一个相同的行数和相同的列数),则可以逐个元素地添加或减去两个矩阵(参见符合矩阵)。然而,矩阵乘法的规则是,只有当第一列中的列数等于第二列中的行数时,两个矩阵才能相乘(即,内部维度相同,n为(m × n)) – 矩阵乘以(n × p)矩阵,得到(m × p)-矩阵。反过来没有产品,第一个暗示矩阵乘法不是可交换的。任何矩阵都可以通过其相关字段中的标量逐个元素相乘。 在各个项米 × Ñ矩阵甲,经常表示为一个我,Ĵ,其中我和Ĵ通常会发生变化,从1至米和 Ñ分别被称为它的元素或条目。
为了方便地表示矩阵运算结果的元素,元素的索引通常附加到带括号或括号的矩阵表达式中; 例如:(AB)i,j指矩阵乘积的元素。在上下文中抽象指数表示法这个含糊不清也指整个矩阵乘积。
Comments