一文看懂生成对抗网络GANs

生成对抗网络 – GANs 是最近2年很热门的一种无监督算法,他能生成出非常逼真的照片,图像甚至视频。我们手机里的照片处理软件中就会使用到它。

本文将详细介绍生成对抗网络 – GANs 的设计初衷、基本原理、10种典型算法和13种实际应用。

 

GANs的设计初衷

一句话来概括 GANs 的设计动机就是——自动化。

人工提取特征——自动提取特征

我们在《一文看懂深度学习(概念+优缺点+典型算法)》中讲过,深度学习最特别最厉害的地方就是能够自己学习特征提取。

传统机器学习和深度学习的核心区别

机器的超强算力可以解决很多人工无法解决的问题。自动化后,学习能力更强,适应性也更强。

人工判断生成结果的好坏——自动判断和优化

我们在《监督学习》中讲过,训练集需要大量的人工标注数据,这个过程是成本很高且效率很低的。而人工判断生成结果的好坏也是如此,有成本高和效率低的问题。

而 GANs 能自动完成这个过程,且不断的优化,这是一种效率非常高,且成本很低的方式。GANs是如何实现自动化的呢?下面我们讲解一下他的原理。

 

生成对抗网络 GANs 的基本原理

大白话版本

知乎上有一个很不错的解释,大家应该都能理解:

假设一个城市治安混乱,很快,这个城市里就会出现无数的小偷。在这些小偷中,有的可能是盗窃高手,有的可能毫无技术可言。假如这个城市开始整饬其治安,突然开展一场打击犯罪的「运动」,警察们开始恢复城市中的巡逻,很快,一批「学艺不精」的小偷就被捉住了。之所以捉住的是那些没有技术含量的小偷,是因为警察们的技术也不行了,在捉住一批低端小偷后,城市的治安水平变得怎样倒还不好说,但很明显,城市里小偷们的平均水平已经大大提高了。

警察严打导致小偷水平提升

警察们开始继续训练自己的破案技术,开始抓住那些越来越狡猾的小偷。随着这些职业惯犯们的落网,警察们也练就了特别的本事,他们能很快能从一群人中发现可疑人员,于是上前盘查,并最终逮捕嫌犯;小偷们的日子也不好过了,因为警察们的水平大大提高,如果还想以前那样表现得鬼鬼祟祟,那么很快就会被警察捉住。

经常提升技能,更多小偷被抓

为了避免被捕,小偷们努力表现得不那么「可疑」,而魔高一尺、道高一丈,警察也在不断提高自己的水平,争取将小偷和无辜的普通群众区分开。随着警察和小偷之间的这种「交流」与「切磋」,小偷们都变得非常谨慎,他们有着极高的偷窃技巧,表现得跟普通群众一模一样,而警察们都练就了「火眼金睛」,一旦发现可疑人员,就能马上发现并及时控制——最终,我们同时得到了最强的小偷和最强的警察。

同时得到了最强的小偷和最强的警察

 

非大白话版本

生成对抗网络(GANs)由2个重要的部分构成:

  1. 生成器(Generator):通过机器生成数据(大部分情况下是图像),目的是“骗过”判别器
  2. 判别器(Discriminator):判断这张图像是真实的还是机器生成的,目的是找出生成器做的“假数据”

生成对抗网络GANs由生成器和判别器构成

下面详细介绍一下过程:

第一阶段:固定「判别器D」,训练「生成器G」

我们使用一个还 OK 判别器,让一个「生成器G」不断生成“假数据”,然后给这个「判别器D」去判断。

一开始,「生成器G」还很弱,所以很容易被揪出来。

但是随着不断的训练,「生成器G」技能不断提升,最终骗过了「判别器D」。

到了这个时候,「判别器D」基本属于瞎猜的状态,判断是否为假数据的概率为50%。

固定判别器,训练生成器

第二阶段:固定「生成器G」,训练「判别器D」

当通过了第一阶段,继续训练「生成器G」就没有意义了。这个时候我们固定「生成器G」,然后开始训练「判别器D」。

「判别器D」通过不断训练,提高了自己的鉴别能力,最终他可以准确的判断出所有的假图片。

到了这个时候,「生成器G」已经无法骗过「判别器D」。

固定生成器,训练判别器

循环阶段一和阶段二

通过不断的循环,「生成器G」和「判别器D」的能力都越来越强。

最终我们得到了一个效果非常好的「生成器G」,我们就可以用它来生成我们想要的图片了。

下面的实际应用部分会展示很多“惊艳”的案例。

循环训练,2遍越来越强

如果对 GANs 的详细技术原理感兴趣,可以看看下面2篇文章:

生成性对抗网络(GAN)初学者指南 – 附代码

长文解释生成对抗网络GAN的详细原理(20分钟阅读)

 

GANs的优缺点

3个优势

  1. 能更好建模数据分布(图像更锐利、清晰)
  2. 理论上,GANs 能训练任何一种生成器网络。其他的框架需要生成器网络有一些特定的函数形式,比如输出层是高斯的。
  3. 无需利用马尔科夫链反复采样,无需在学习过程中进行推断,没有复杂的变分下界,避开近似计算棘手的概率的难题。

2个缺陷

  1. 难训练,不稳定。生成器和判别器之间需要很好的同步,但是在实际训练中很容易D收敛,G发散。D/G 的训练需要精心的设计。
  2. 模式缺失(Mode Collapse)问题。GANs的学习过程可能出现模式缺失,生成器开始退化,总是生成同样的样本点,无法继续学习。

扩展阅读:《为什么训练生成对抗网络如此困难?》阅读这篇文章对数学要求很高

 

10大典型的GANs算法

GANs 算法有数百种之多,大家对于 GANs 的研究呈指数级的上涨,目前每个月都有数百篇论坛是关于对抗网络的。

下图是每个月关于 GANs 的论文发表数量:

关于GANs的论文呈指数级增长

如果你对 GANs 算法感兴趣,可以在 「GANs动物园」里查看几乎所有的算法。我们为大家从众多算法中挑选了10个比较有代表性的算法,技术人员可以看看他的论文和代码。

算法论文代码
GAN论文地址代码地址
DCGAN论文地址代码地址
CGAN论文地址代码地址
CycleGAN论文地址代码地址
CoGAN论文地址代码地址
ProGAN论文地址代码地址
WGAN论文地址代码地址
SAGAN论文地址代码地址
BigGAN论文地址代码地址

上面内容整理自《Generative Adversarial Networks – The Story So Far》原文中对算法有一些粗略的说明,感兴趣的可以看看。

 

GANs 的13种实际应用

GANs 看上去不如「语音识别」「文本挖掘」那么直观。不过他的应用已经进入到我们的生活中了。下面给大家列举一些 GANs 的实际应用。

生成图像数据集

人工智能的训练是需要大量的数据集的,如果全部靠人工收集和标注,成本是很高的。GANs 可以自动的生成一些数据集,提供低成本的训练数据。

GANs生成人脸的矢量算法案例

 

生成人脸照片

生成人脸照片是大家很熟悉的应用,但是生成出来的照片用来做什么是需要思考的问题。因为这种人脸照片还处于法律的边缘。

2014年至2017年GANs能力进展的实例

 

生成照片、漫画人物

GANs 不但能生成人脸,还能生成其他类型的照片,甚至是漫画人物。

GANs生成的照片

GANs生成的漫画人物

 

图像到图像的转换

简单说就是把一种形式的图像转换成另外一种形式的图像,就好像加滤镜一样神奇。例如:

  • 把草稿转换成照片
  • 把卫星照片转换为Google地图的图片
  • 把照片转换成油画
  • 把白天转换成黑夜

用pix2pix从草图到彩色照片的示例

GANs应用-照片到油画、马到斑马、冬天到夏天、照片到google地图

 

文字到图像的转换

在2016年标题为“ StackGAN:使用 StackGAN 的文本到逼真照片的图像合成 ”的论文中,演示了使用 GAN,特别是他们的 StackGAN,从鸟类和花卉等简单对象的文本描述中生成逼真的照片。

从StackGAN获取鸟类的文本描述和GAN生成照片的示例

 

语意 – 图像 – 照片 的转换

在2017年标题为“ 高分辨率图像合成和带条件GAN的语义操纵 ”的论文中,演示了在语义图像或草图作为输入的情况下使用条件GAN生成逼真图像。

语义图像和GAN生成的城市景观照片的示例

 

自动生成模特

在2017年标题为“ 姿势引导人形象生成 ”的论文中,可以自动生成人体模特,并且使用新的姿势。

GAN生成了新的模特姿势

 

照片到Emojis

GANs 可以通过人脸照片自动生成对应的表情(Emojis)。

名人照片和GAN生成的表情符号示例

 

照片编辑

使用GANs可以生成特定的照片,例如更换头发颜色、更改面部表情、甚至是改变性别。

使用IcGAN编辑照片的效果

 

预测不同年龄的长相

给一张人脸照片, GANs 就可以帮你预测不同年龄阶段你会长成什么样。

用具有不同表观年龄的GAN生成的面部照片的示例

 

提高照片分辨率,让照片更清晰

给GANs 一张照片,他就能生成一张分辨率更高的照片,使得这个照片更加清晰。

GANs在原始照片的基础上增加分辨率,使照片更清晰

 

照片修复

假如照片中有一个区域出现了问题(例如被涂上颜色或者被抹去),GANs可以修复这个区域,还原成原始的状态。

遮住照片中间的一部分,GANs可以很好的修复

 

自动生成3D模型

给出多个不同角度的2D图像,就可以生成一个3D模型。

从2D图像到3D椅子模型的建立过程

 

 

百度百科+维基百科

百度百科版本

生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。原始 GAN 理论中,并不要求 G 和 D 都是神经网络,只需要是能拟合相应生成和判别的函数即可。但实用中一般均使用深度神经网络作为 G 和 D 。一个优秀的GAN应用需要有良好的训练方法,否则可能由于神经网络模型的自由性而导致输出不理想。

查看详情

维基百科版本

生成对抗网络(GAN)是一类用于无监督机器学习的人工智能算法,由在零和游戏框架中相互竞争的两个神经网络系统实现。他们是由Ian Goodfellow 等人介绍的。在2014年这种技术可以生成照片看起来至少在表面上真实的人的观察员,有很多的现实特征(虽然在测试中的人可以真正告诉在许多情况下产生)。

查看详情

 

扩展阅读