2019年AI,数据科学,深度学习和机器学习的主要发展是什么?您预计2020年会有哪些主要趋势?
深度学习
人工智能、机器学习、深度学习在2019年的重要发展和2020的趋势(技术篇)
2019年AI,数据科学,深度学习和机器学习的主要发展是什么?您预计2020年会有哪些主要趋势?
「65页PDF」让 PM 全面理解深度学习
本文汇总了深度学习相关的重要知识点,通过长图和 PDF 的方式呈现给大家,欢迎各位 PM 下载。
深度学习,怎么知道你的训练数据真的够了?
在这篇文章中,我们将从回归分析开始到深度学习等领域,快速而广泛地回顾目前关于训练数据多少的经验和相关的研究结果。
从基于规则到深度学习,NLP 技术进阶三部曲
我们将快速介绍NLP中的3种主要技术方法,以及我们如何使用它们来构建出色的机器!
2019年深度学习的十大预测
革命性进展应该分阶段发生,我们今天遇到的是实现Interventional level的主要障碍。这并不意味着我们不能取得任何进展,而是在目前的成熟度水平中有许多悬而未决的成果,而这些成果已经准备好进行开发,DL在2019年的进展将主要围绕这一务实的认识。
BAT专家解读:如何选出最合适的深度学习框架?
随着深度学习关注度和势头上升,深度学习被越来越多的企业和组织的生产实践结合起来。这时,无论是对于深度学习相关专业的初学者,还是已经在企业和组织中从事工业场景应用和研发的开发者来说,选择一个适合自己,适合业务场景需求的深度学习框架显得尤为重要。
深度长文:中文分词的十年回顾
本文回顾了中文分词在2007-2017十年间的技术进展,尤其是自深度学习渗透到自然语言处理以来的主要工作。我们的基本结论是,中文分词的监督机器学习方法在从非神经网络方法到神经网络方法的迁移中尚未展示出明显的技术优势。中文分词的机器学习模型的构建,依然需要平衡考虑已知词和未登录词的识别问题。
人工智能的发展史——3次 AI 浪潮
AI 不是什么全新的东西,他已经发展了大几十年了!下面我们介绍一下最具代表性的3个发展阶段。